MULTI-TAPE TURING MACHINES:
INFORMAL DESCRIPTION

4 Control

l <+— head,
Alajlay| ... G Tape,

l <+«— head,
Alag|ay| .-+ G TapeE,

We add a finite
number of tapes



MULTI-TAPE TURING MACHINES:
INFORMAL DESCRIPTION (II)

Each tape is bounded to the left by a cell containing the
symbol A

Each tape has a unique header

Transitions have the form (for a 2-tape Turing machine):

( (P, (X1, X)), (4, (Y1, ¥2)) )

Such that each x; is in 2 and each y; is in 2. or is = or €.
and If x, = Atheny,=—> ory,=A



MULTI-TAPE TURING MACHINES

Construct a 2-tape Turing machine that recognizes the language:

L={a"b":n=0,1,2, ...}

Input:
Tapel: Aw
Hints: Tape2: A
use the second tape as an stack Output:

«Use the machines M1 and MO
Tapel: Al... fwel

or
Tapel: AO... 1fw gL



MULTI-TAPE TURING MACHINES VS TURING
MACHINES

v, |
Alag|ay |- al...

Alby b, |- b

We can simulate a 2-tape Turing machine M2 in a Turing
machine M:

* We can represent the contents of the 2 tapes in the single tape by
using special symbols

*\\We can simulate one transition from the M2 by constructing
multiple transitions on M

*\\e introduce several (finite) new states into M <:



USING STATES TO “REMEMBER” INFORMATION

Configuration in a 2-tape Turing Machine M2:

|

Tape; |Ala|blalb
l State: s

Tape, |A|b|bla

State in the Turing machine M: “g+p+1+a+2”

Which represents: /
*M2 is In state s

Cell pointed by first header in M2 contains b
Cell pointed by second header in M2 contains an a




USING STATES TO “REMEMBER” INFORMATION

(2)

State in the Turing machine M: “s+b+1+a+2”

How many states are there'in M?

(# states INnM2) * |Z or 2> or &|* |2 or =2 or <

Yes, we need large number of states for M but it is finite!



Configuration in a 2-tape Turing Machine M2:

|

Tape; [Alal|blalb
l State In M2: s

Tape, |Alb|b|a

Equivalent configuration in a Turing Machine M:

AAlababAzxx\/XXASbbaA4xx

| | |

State iIn M: s+b+1+a+2



SIMULATING M2 wWiITH M

*The alphabet Z of the Turing machine M extends the alphabet
>, from the M, by adding the separator symbols: A;, Ay, Ay, Ay
and A,, and adding the mark symbols: V and x

*\\e introduce more states for M, one for each 5-tuple
p+o+1+ B+2 where p In an state in M, and a+1+ 3+2
Indicates that the head of the first tape points to o and the
second one to 3

*\\e also need states of the form p+<+1+->+2 for control
purposes



SIMULATING TRANSITIONS IN M2 WITH

AAlababAZXX\/XXABbbaA4XXX\/

| | | |

State In M: s+b+1+a+2

«At the beginning of each iteration of M2, the head starts at A, and
both M and M2 are in an state s

*\\e traverse the whole tape do determine the state p+a+1+ 3+2,
Thus, the transition in M2 that is applicable must have the form:

((p.(a, B)). (Q.(v2w)) ) In M,

p+ ot+l+ f+2 mmm) g+ v+1+y+2  in M



SIMULATING TRANSITIONS IN M2 WITH M

(2)

*To apply the transformation (q,(y,w)), we go forwards from the
first cell.

*If the y (or v) Is > (or €) we move the marker to the right

(left): i i
Alx...\/ X jl> Ap x| .. x \

*If the y (or ) Is a character, we first determine the correct
position and then overwrite




Alxix|blalb|A,|A

Alx|x|Vla|b|A,| Al|a

Output: l state: s+b+1

AlAglalblalb|A, x| x




MULTI-TAPE TURING MACHINES VS
TURING MACHINES (6)

*\\e conclude that 2-tape Turing machines can be simulated by
Turing machines. Thus, they don’t add computational power!

*Using a similar construction we can show that 3-tape Turing
machines can be simulated by 2-tape Turing machines (and
thus, by Turing machines).

*Thus, k-tape Turing machines can be simulated by Turing
machines



IMPLICATIONS

*|f we show that a function can be computed by a k-tape
Turing machine, then the function Is Turing-computable

In particular, iIf a language can be decided by a k-tape
Turing machine, then the language Is decidable

Example: Since we constructed a 2-tape TM that decides
L={a"b":n=0, 1,2, ...}, then L is Turing-computable.



IMPLICATIONS (2)

Example: Show that if L1 and L2 are decidable then
L1 w L2 is also decidable

Proof. ...



HOMEWORK

1. Prove that (ab)* is Turing-enumerable (Hint: use a 2-tape Turing
machine.)

2. Exercise 4.24 a) and b) (Hint: use a 3-tape Turing machine.)

3. For proving that * is Turing-enumerable, we needed to construct a
Turing machine that computes the successor of a word. Here are
some examples of what the machine will produce (w - w’ indicates
that when the machine receives w as input, it produces w’ as output)

a—>b—->aa—>ab > ba—-> bb - aaa



